5 research outputs found

    An Analysis of the NIST SP 800-90A Standard

    Get PDF
    We investigate the security properties of the three deterministic random bit generator (DRBG) mechanisms in the NIST SP 800-90A standard [2]. This standard received a considerable amount of negative attention, due to the controversy surrounding the now retracted DualEC-DRBG, which was included in earlier versions. Perhaps because of the attention paid to the DualEC, the other algorithms in the standard have received surprisingly patchy analysis to date, despite widespread deployment. This paper addresses a number of these gaps in analysis, with a particular focus on HASH-DRBG and HMAC-DRBG. We uncover a mix of positive and less positive results. On the positive side, we prove (with a caveat) the robustness [16] of HASH-DRBG and HMAC-DRBG in the random oracle model (ROM). Regarding the caveat, we show that if an optional input is omitted, then – contrary to claims in the standard — HMAC-DRBG does not even achieve the (weaker) property of forward security. We also conduct a more informal and practice-oriented exploration of flexibility in implementation choices permitted by the standard. Specifically, we argue that these DRBGs have the property that partial state leakage may lead security to break down in unexpected ways. We highlight implementation choices allowed by the overly flexible standard that exacerbate both the likelihood, and impact, of such attacks. While our attacks are theoretical, an analysis of two open source implementations of CTR-DRBG shows that potentially problematic implementation choices are made in the real world

    Backdoors in Pseudorandom Number Generators:Possibility and Impossibility Results

    Get PDF
    Inspired by the Dual EC DBRG incident, Dodis et al. (Eurocrypt 2015) initiated the formal study of backdoored PRGs, showing that backdoored PRGs are equivalent to public key encryption schemes, giving constructions for backdoored PRGs (BPRGs), and showing how BPRGs can be ``immunised\u27\u27 by careful post-processing of their outputs. In this paper, we continue the foundational line of work initiated by Dodis et al., providing both positive and negative results. We first revisit the backdoored PRG setting of Dodis et al., showing that PRGs can be more strongly backdoored than was previously envisaged. Specifically, we give efficient constructions of BPRGs for which, given a single generator output, Big Brother can recover the initial state and, therefore, all outputs of the BPRG. Moreover, our constructions are forward-secure in the traditional sense for a PRG, resolving an open question of Dodis et al. in the negative. We then turn to the question of the effectiveness of backdoors in robust PRNGs with input (c.f. Dodis et al., ACM-CCS 2013): generators in which the state can be regularly refreshed using an entropy source, and in which, provided sufficient entropy has been made available since the last refresh, the outputs will appear pseudorandom. The presence of a refresh procedure might suggest that Big Brother could be defeated, since he would not be able to predict the values of the PRNG state backwards or forwards through the high-entropy refreshes. Unfortunately, we show that this intuition is not correct: we are also able to construct robust PRNGs with input that are backdoored in a backwards sense. Namely, given a single output, Big Brother is able to rewind through a number of refresh operations to earlier ``phases\u27\u27, and recover all the generator\u27s outputs in those earlier phases. Finally, and ending on a positive note, we give an impossibility result: we provide a bound on the number of previous phases that Big Brother can compromise as a function of the state-size of the generator: smaller states provide more limited backdooring opportunities for Big Brother

    The TypTop System:Personalized Typo-Tolerant Password Checking

    Get PDF
    Password checking systems traditionally allow login only if the correct password is submitted. Recent work on typo-tolerant password checking suggests that usability can be improved, with negligible security loss, by allowing a small number of typographical errors. Existing systems, however, can only correct a handful of errors, such as accidentally leaving caps lock on or incorrect capitalization of the first letter in a password. This leaves out numerous kinds of typos made by users, such as transposition errors, substitutions, or capitalization errors elsewhere in a password. Some users therefore receive no benefit from existing typo-tolerance mechanisms. We introduce personalized typo-tolerant password checking. In our approach, the authentication system learns over time the typos made by a specific user. In experiments using Mechanical Turk, we show that 45% of users would benefit from personalization. We therefore design a system, called TypTop, that securely implements personalized typo-tolerance. Underlying TypTop is a new stateful password-based encryption scheme that can be used to store recent failed login attempts. Our formal analysis shows that security in the face of an attacker that obtains the state of the system reduces to the difficulty of a brute-force dictionary attack against the real password. We implement TypTop for Linux and Mac OS login and report on a proof-of-concept deployment

    Bloom Syndrome and Maternal Uniparental Disomy for Chromosome 15

    No full text
    Bloom syndrome (BS) is an autosomal recessive disorder characterized by increases in the frequency of sister-chromatid exchange and in the incidence of malignancy. Chromosome-transfer studies have shown the BS locus to map to chromosome 15q. This report describes a subject with features of both BS and Prader-Willi syndrome (PWS). Molecular analysis showed maternal uniparental disomy for chromosome 15. Meiotic recombination between the two disomic chromosomes 15 has resulted in heterodisomy for proximal 15q and isodisomy for distal 15q. In this individual BS is probably due to homozygosity for a gene that is telomeric to D15S95 (15q25), rather than to genetic imprinting, the mechanism responsible for the development of PWS. This report represents the first application of disomy analysis to the regional localization of a disease gene. This strategy promises to be useful in the genetic mapping of other uncommon autosomal recessive conditions
    corecore